12,219 research outputs found

    Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid

    Get PDF
    In this paper we examine some general features of the time-dependent dynamics of drop deformation and breakup at low Reynolds numbers. The first aspect of our study is a detailed numerical investigation of the ‘end-pinching’ behaviour reported in a previous experimental study. The numerics illustrate the effects of viscosity ratio and initial drop shape on the relaxation and/or breakup of highly elongated droplets in an otherwise quiescent fluid. In addition, the numerical procedure is used to study the simultaneous development of capillary-wave instabilities at the fluid-fluid interface of a very long, cylindrically shaped droplet with bulbous ends. Initially small disturbances evolve to finite amplitude and produce very regular drop breakup. The formation of satellite droplets, a nonlinear phenomenon, is also observed

    A spherical particle straddling a fluid/gas interface in an axisymmetric straining flow

    Get PDF
    Numerical solutions, obtained via the boundary-integral technique, are used to consider the effect of a linear axisymmetric straining flow on the existence of steady-state configurations in which a neutrally buoyant spherical particle straddles a gas–liquid interface. The problem is directly applicable to predictions of the stability of particle capture in flotation processes, and is also of interest in the context of contact angle and surface tension measurements. A primary goal of the present study is a determination of the critical capillary number, Ca_c, beyond which an initially captured particle is pulled from the interface by the flow, and the dependence of Ca_c on the equilibrium contact angle θ_c. We also present equilibrium configurations for a wide range of contact angles and subcritical capillary numbers

    Study and development of techniques for automatic control of remote manipulators

    Get PDF
    An overall conceptual design for an autonomous control system of remote manipulators which utilizes feedback was constructed. The system consists of a description of the high-level capabilities of a model from which design algorithms are constructed. The autonomous capability is achieved through automatic planning and locally controlled execution of the plans. The operator gives his commands in high level task-oriented terms. The system transforms these commands into a plan. It uses built-in procedural knowledge of the problem domain and an internal model of the current state of the world

    Electromagnetism and multiple-valued loop-dependent wave functionals

    Full text link
    We quantize the Maxwell theory in the presence of a electric charge in a "dual" Loop Representation, i.e. a geometric representation of magnetic Faraday's lines. It is found that the theory can be seen as a theory without sources, except by the fact that the wave functional becomes multivalued. This can be seen as the dual counterpart of what occurs in Maxwell theory with a magnetic pole, when it is quantized in the ordinary Loop Representation. The multivaluedness can be seen as a result of the multiply-connectedness of the configuration space of the quantum theory.Comment: 5 page

    The creeping motion of a spherical particle normal to a deformable interface

    Get PDF
    Numerical results are presented for the approach of a rigid sphere normal to a deformable fluid-fluid interface in the velocity range for which inertial effects may be neglected. Both the case of a sphere moving with constant velocity, and that of a sphere moving under the action of a constant non-hydrodynamic body force are considered for several values of the viscosity ratio, density difference and interfacial tension between the two fluids. Two distinct modes of interface deformation are demonstrated: a film drainage mode in which fluid drains away in front of the sphere leaving an ever-thinning film, and a tailing mode where the sphere passes several radii beyond the plane of the initially undeformed interface, while remaining encapsulated by the original surrounding fluid which is connected with its main body by a thin thread-like tail behind the sphere. We consider the influence of the viscosity ratio, density difference, interfacial tension and starting position of the sphere in deter-mining which of these two modes of deformation will occur

    Magnetic Monopole in the Loop Representation

    Full text link
    We quantize the electromagnetic field in the presence of a static magnetic monopole, within the loop-representation formalism. We find that the loop-dependent wave functional becomes multivalued, in the sense that it acquires a dependence on the surfaces bounded by the loop. This generalizes what occurs in quantum mechanics in multiply connected spaces. When Dirac's quantization condition holds, this surface-dependence disappears, together with the effect of the monopole on the electromagnetic field.Comment: reference and comment adde

    Mean-Field and Non-Mean-Field Behaviors in Scale-free Networks with Random Boolean Dynamics

    Full text link
    We study two types of simplified Boolean dynamics over scale-free networks, both with synchronous update. Assigning only Boolean functions AND and XOR to the nodes with probability 1−p1-p and pp, respectively, we are able to analyze the density of 1's and the Hamming distance on the network by numerical simulations and by a mean-field approximation (annealed approximation). We show that the behavior is quite different if the node always enters in the dynamic as its own input (self-regulation) or not. The same conclusion holds for the Kauffman KN model. Moreover, the simulation results and the mean-field ones (i) agree well when there is no self-regulation, and (ii) disagree for small pp when self-regulation is present in the model.Comment: 12 pages, 7 figure

    Estimating Impact and Frequency of Risks to Safety and Mission Critical Systems Using CVSS

    Get PDF
    Many safety and mission critical systems depend on the correct and secure operation of both supportive and core software systems. E.g., both the safety of personnel and the effective execution of core missions on an oil platform depend on the correct recording storing, transfer and interpretation of data, such as that for the Logging While Drilling (LWD) and Measurement While Drilling (MWD) subsystems. Here, data is recorded on site, packaged and then transferred to an on-shore operational centre. Today, the data is transferred on dedicated communication channels to ensure a secure and safe transfer, free from deliberately and accidental faults. However, as the cost control is ever more important some of the transfer will be over remotely accessible infrastructure in the future. Thus, communication will be prone to known security vulnerabilities exploitable by outsiders. This paper presents a model that estimates risk level of known vulnerabilities as a combination of frequency and impact estimates derived from the Common Vulnerability Scoring System (CVSS). The model is implemented as a Bayesian Belief Network (BBN)
    • …
    corecore